Rush University, College of Health Sciences

An Evaluation of the Prototype OxyMulti Mask Prototype Compared to the Oxymask<sup>™</sup> Aerosol, OxyMulti Mask<sup>™</sup> and Airlife<sup>™</sup> Aerosol Mask for Aerosol Delivery in Adults

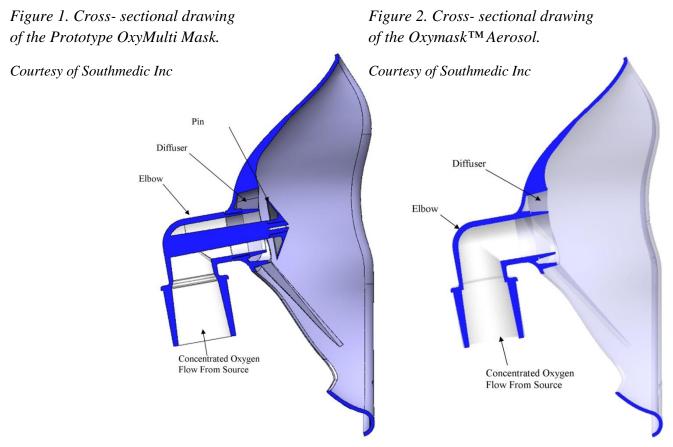
Respiratory Care Program, Aerosol Lab

Prepared by : Meagan N. Dubosky MS, RRT-ACCS, NPS, AE-C 2/7/2014

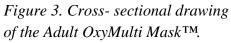
## **Objectives**

To compare the amount of drug delivered to an in-vitro, spontaneously breathing, adult lung model using four different aerosol masks; Prototype OxyMulti Mask, Oxymask<sup>TM</sup> Aerosol, OxyMulti Mask<sup>TM</sup> and Airlife<sup>TM</sup> Aerosol mask.

To evaluate the effect these four masks (Prototype OxyMulti Mask, Oxymask<sup>™</sup> Aerosol, OxyMulti Mask<sup>™</sup> and Airlife<sup>™</sup> aerosol mask) have on particle size using common delivery devices.


#### Introduction

A large number of patient interfaces are available to deliver inhaled aerosol medications to spontaneously breathing patients. Aerosol masks and mouthpieces are commonly used in the acute care setting. The mouthpiece is the preferred method of delivery due to the physiologic filtering by the nose compared to breathing through the mouth<sup>1</sup>. The mouthpiece does require the patient to participate in the treatment and people in hospitals are often tired and ill. Aerosol masks are ideal interfaces with these patients because they require minimal patient coordination and allow the patient to rest while receiving their aerosol treatment.


There are also varying types of devices used in hospitals for oxygen administration. A benefit of the new hybrid delivery interfaces, such as the current OxyMulti Mask<sup>TM</sup> and the Prototype OxyMulti Mask, is the ability of the mask to be used for aerosol therapy and oxygen therapy providing a wide range of FiO<sub>2</sub> (24% to 80%).<sup>2</sup> The Prototype OxyMulti Mask may create an advantage to the patient and clinician by enabling delivery of different levels of FiO<sub>2</sub> and aerosol with one device. This product may provide a cost savings when compared to using multiple other devices.

The Prototype OxyMulti Mask has a diffuser that creates a vortex directing flow toward the patient's mouth.<sup>2</sup> Figure 1 illustrates the cross section of the diffuser. It is comprised of a cup and pin design directing oxygen towards the nose and mouth. Aerosol diffuses out from the inlet and pin in the shape of a mushroom. During inspiration, the diffuser causes a vortex to form a flame like plume towards the face, forcing the delivery of oxygen and/or aerosol towards the mouth.<sup>2</sup> Oxygen and aerosol not directed towards the mouth may result in the loss of aerosol and lower oxygen concentrations in other adult aerosol masks.

Several factors affect aerosol delivery to the lungs including particle size, patient cooperation, mask seal, and spontaneous breathing patterns. There are no reports at this time regarding the effect of the diffuser on particle size or aerosol delivery with the Prototype OxyMulti Mask. The purpose of this study is to quantify the characteristics and quantity of aerosol delivered to the distal regions of a spontaneously breathing lung model using both jet and vibrating mesh nebulizers with the Prototype OxyMulti Mask, Oxymask<sup>TM</sup> Aerosol (Figure 2), OxyMulti Mask<sup>TM</sup> (Figure 3) and an adult aerosol mask (Figure 4). The methodology used is based on a published model.<sup>3</sup>



Southmedic Prototype Adult MultiMask Cross Section



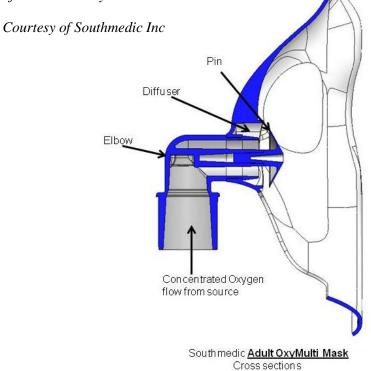



Figure 4. Photo of Airlife<sup>™</sup> Aerosol Mask.

Southmedic Adult Aerosol Mask

Cross Section

# Carefusion



#### Methods

#### **Experimental Setup and Research Design- Dose Deposition**

An adult upper airway manikin (Laerdal, Stavenger, Norway) elevated at 30 degrees was attached to a training test lung (TTL) (Michigan Instruments, Grand Rapids, Michigan) with both bronchi attached to a collecting filter (Carefusion, San Diego, California) using a Y adapter. A conventional mechanical ventilator, PB7200 (Puritan Bennett<sup>™</sup>, Covidien Inc., Mansfield, Massachusetts), was attached to the TTL and programmed to simulate an adult asthmatic breathing pattern (peak inspiratory flowrate 60 L/min, tidal volume 500 mL, respiratory rate 25 breath/min, inspiratory-expiratory ratio 1:3, sinusoidal waveform). Tidal volume and flow rate was monitored with a respiratory profile monitor (Novametrix CosmoPlus, Wallingford, Connecticut) to ensure accuracy of breath delivery.

All experiments were conducted using two jet nebulizers, Uni-Heart® (Westmed, Tucson, Arizona) operated at 2 and 4 L/min and the Misty Max 10<sup>™</sup> (Carefusion, San Diego, California) operated at 8 and 10 L/min., as well as a vibrating mesh nebulizer (Aeroneb Solo, Aerogen, Galway, Ireland) with flows of 0, 2, 4, 8 and 10 L/min through it to deliver albuterol sulfate (2.5mg/ 3mL) from the aerosol generator to the manikin via 4 mask interfaces, Prototype OxyMulti Mask, Oxymask<sup>™</sup> Aerosol, OxyMulti Mask<sup>™</sup> (Southmedic, Barrie, Ontario, Canada) and Airlife<sup>™</sup> aerosol mask (Carefusion, San Diego, California).

Each treatment was run until sputter or 10 minutes, whichever occurred first, with each mask (n=3). Appendix A presents the scheme of this study design. Following each nebulizer treatment, deposited drug was eluted from the filter using 10 milliliters of 0.01% NaOH and analyzed by spectrophotometry (276mm) to quantify mass of drug. Equipment utilized in dose deposition analysis detailed in Appendix B.

#### **Experimental Setup and Research Design- Particle Size**

Particle size for each nebulizer was measured as mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD), using the Anderson 8-stage cascade impactor (ACI) operating at a flow of 28.3 L/min, verified with a flow calibrator. The ACI classifies aerosol particle sizes from 0.4  $\mu$ m to 9  $\mu$ m aerodynamic diameter by collecting particles on plates within the device. The ACI was operated at ambient temperatures and each nebulizer and mask pairing ran for 60 seconds. Appendix A represents the scheme of the study design of this research. Following each nebulizer treatment, drug deposited on ACI plates and throat was eluted using 5 milliliters (plates) and 10 milliliters (throat) of 0.01% NaOH and analyzed by spectrophotometry (276mm).

All experiments were conducted using two jet nebulizers, Uni-Heart® (Westmed, Tucson, Arizona) operated at 2 and 4 L/min and the Misty Max 10<sup>™</sup> (Carefusion, San Diego, California) operated at 8 and 10 L/min., as well as a vibrating mesh nebulizer (Aeroneb Solo, Aerogen, Galway, Ireland) with flows of 0, 2, 4, 8 and 10 L/min through it to deliver albuterol sulfate (2.5mg/ 3mL) from the aerosol generator to the ACI via 4 mask interfaces, Prototype OxyMulti Mask, Oxymask<sup>™</sup> Aerosol, OxyMulti Mask<sup>™</sup> (Southmedic, Barrie, Ontario, Canada) and Airlife<sup>™</sup> aerosol mask (Carefusion, San Diego, California). Equipment utilized in particle size determination detailed in Appendix C.

Data were analyzed using statistics software (SPSS 21.0, SPSS, Chicago, Illinois) with mean and standard deviation reported for all measurements. Significance was set at p < 0.05. Dose deposition, MMAD, and GSD data were evaluated using one way analysis of variance, with a Bonferroni adjustment for multiple comparisons, with the mean difference significant at the .05 level.

### **Report Summary**

#### **Dose Deposition**

When comparing the amount of drug delivered to an in-vitro, spontaneously breathing, adult lung model using four different aerosol masks, the mean amount of drug delivered was greatest in the OxyMask<sup>TM</sup> Aerosol ( $329 \pm 126 \ \mu g$ ) followed by the OxyMulti Mask<sup>TM</sup> ( $269 \pm 86 \ \mu g$ ), Prototype OxyMulti Mask ( $241 \pm 105 \ \mu g$ ) and Airlife<sup>TM</sup> aerosol mask ( $210 \pm 102 \ \mu g$ ) (Table 1).

A one-way analysis of variance was conducted to explore the effect of four different masks (Prototype OxyMulti Mask, n=27; OxyMulti Mask<sup>TM</sup>, n=27; OxyMask<sup>TM</sup> Aerosol, n=27; and Airlife<sup>TM</sup> aerosol mask, n=27) on mean drug delivery. There was a statistically significant difference in mean amount of drug delivered between the four masks:  $F=_{3,104} 6.21$ , p=0.001 (Table 2). Post-hoc comparisons using the Bonferroni test indicated that the mean difference in drug delivered for the OxyMask<sup>TM</sup> Aerosol (329 ±126 µg) was significantly different from the Airlife<sup>TM</sup> aerosol mask (210 ± 102) and the Prototype OxyMulti Mask (240 ± 105 µg) (Table 3). The OxyMulti Mask<sup>TM</sup> did not differ significantly from either of the masks.

Data on each of the four masks was split by flow and a one-way analysis of variance was conducted (Table 4). Flow rates of 0, 2, 4, 8, and 10 L/min were used with each nebulizer and mask combination and statistical significance between the masks was found at flows of 0, 8 and 10 L/min (Table 5). We must use caution when interpreting this sub-analysis data since the group size decreased to 6 per group. These findings may change if the sample size is increased. When flow was 0 L/min, the OxyMask<sup>TM</sup> Aerosol (410  $\pm$  28 µg) had greater drug deposition than all three other mask; Prototype OxyMulti Mask  $(317 \pm 20 \ \mu g)$ , OxyMulti Mask<sup>TM</sup>  $(351 \pm 15 \ \mu g)$ , Airlife<sup>TM</sup> aerosol mask  $(208 \pm 15 \ \mu g)$ . Both the OxyMulti Mask<sup>™</sup> and Prototype OxyMulti Mask had a statistically significant greater amount of drug deposition without flow when compared to the Airlife<sup>™</sup> aerosol mask. When flow was 8 L/min the OxyMask<sup>TM</sup> Aerosol ( $379 \pm 27 \mu g$ ) had significantly greater drug deposition than all other masks; Prototype OxyMulti Mask (281 ± 28 µg), OxyMulti Mask<sup>TM</sup> (273 ± 26 µg), Airlife<sup>TM</sup> aerosol mask (241  $\pm$  24 µg). When flow was 10 L/min the OxyMask<sup>TM</sup> Aerosol (386  $\pm$  9 µg) had significantly greater drug deposition than the three other masks: Prototype OxyMulti Mask (237  $\pm$  14 µg), OxyMulti Mask<sup>TM</sup> (268  $\pm$  19 µg) and Airlife<sup>TM</sup> aerosol mask (233  $\pm$  29 µg). At 10 L/min flow, the OxyMulti Mask<sup>TM</sup> had significantly greater drug deposition than the Airlife<sup>TM</sup> aerosol mask (Table 6). Graph 1 represents the mean drug deposition of each aerosol mask at each flow rate (L/min) tested.

## **Particle Size**

The mean MMAD/GSD of the OxyMulti Mask<sup>TM</sup> ( $2.54 \pm 0.25/2.02 \pm 0.10 \ \mu m$ ), OxyMask<sup>TM</sup> Aerosol ( $2.74 \pm 0.34/2.04 \pm 0.07 \ \mu m$ ), Prototype OxyMulti Mask ( $2.79 \pm 0.28/2.07 \pm 0.10 \ \mu m$ ) and Airlife<sup>TM</sup> aerosol mask ( $2.87 \pm 0.19/2.11 \pm 0.08 \ \mu m$ ) were found to be similar (Table 7).

A one-way analysis of variance was conducted to explore the effect of the four different masks (OxyMulti Mask<sup>TM</sup>, n=27; Prototype OxyMulti Mask, n=27; Oxymask<sup>TM</sup> Aerosol, n=27; and Airlife<sup>TM</sup> aerosol mask, n=27) on particle size, defined as mean MMAD and GSD. Statistical significance did exist when comparing the mean MMAD between the four masks:  $F=_{3,104}$  7.18, p = <0.001. There were statistically significant differences in mean GSD between the three masks:  $F=_{3,104}$  4.36, p = 0.006 (Table 8). Although the OxyMulti Mask<sup>TM</sup> showed a statistically significant difference in MMAD compared to the other masks, these differences are not clinically significant. The particle size means are between 2.5 and 2.9 µm which would most likely result in the same depth of deposition. The statistically significant difference is a result of the lack of variability in the data. Post-hoc comparisons using the Bonferroni test for MMAD is included (Table 9), however, with a small sample size we cannot be assured that these results would remain if the n was increased. We were unable to produce reliable GSD post-hoc data due to the small sample size. Flow rates of 0, 2, 4, 8, and 10 L/min were used with each mask and nebulizer combination with MMAD and GSD found to be similar (Table 10). Graphs 2 and 3 below illustrate the small variability in MMAD and GSD between these masks.

| Mask (n)                               |            | Drug in µg      |
|----------------------------------------|------------|-----------------|
|                                        |            | Mean (SD)       |
| OxyMask <sup>TM</sup> Aerosol (27)     |            | 329.14 (125.72) |
| MultiMask (27)                         |            | 268.95 (85.80)  |
| Prototype OxyMulti Mask (27)           |            | 240.79 (105.09) |
| Airlife <sup>™</sup> aerosol mask (27) |            | 210.08 (102.15) |
|                                        | Total Runs | 108             |

Table 1. Overall mean drug deposition for each aerosol mask

Table 2. ANOVA Results. Deposition difference between masks. (drug in  $\mu g$ )

|                | Sum of Squares | df  | Mean Square | F     | Sig.                          |
|----------------|----------------|-----|-------------|-------|-------------------------------|
| Between Groups | 207934.659     | 3   | 69311.553   | 6.210 | <mark>.001<sup>a</sup></mark> |
| Within Groups  | 1160847.585    | 104 | 11161.996   |       |                               |
| Total          | 136782.244     | 107 |             |       |                               |

\* The mean difference is significant at the 0.05 level.

a. Significant difference in mean amt of drug delivered between 4 mask groups.

| (I) Mask        | (J) Mask        | Mean                                | Std. Error            | Sig.              | 95% Confidence Interval |             |
|-----------------|-----------------|-------------------------------------|-----------------------|-------------------|-------------------------|-------------|
|                 |                 | Difference (I-                      |                       |                   | Lower Bound             | Upper Bound |
|                 |                 | J)                                  |                       |                   |                         |             |
|                 | Aerosol Mask    | 58.87148                            | 28.75438              | .259              | -18.4680                | 136.2110    |
| MultiMask       | Prototype       | 28.16519                            | 28.75438              | 1.000             | -49.1743                | 105.5047    |
|                 | Oxymask Aerosol | -60.18630                           | 28.75438              | .233              | -137.5258               | 17.1532     |
|                 | MultiMask       | -58.87148                           | 28.75438              | .259              | -136.2110               | 18.4680     |
| Aerosol Mask    | Prototype       | -30.70630                           | 28.75438              | 1.000             | -108.0458               | 46.6332     |
|                 | Oxymask Aerosol | <mark>-119.05778<sup>*</sup></mark> | <mark>28.75438</mark> | .000 <sup>a</sup> | -196.3973               | -41.7183    |
|                 | MultiMask       | -28.16519                           | 28.75438              | 1.000             | -105.5047               | 49.1743     |
| Prototype       | Aerosol Mask    | 30.70630                            | 28.75438              | 1.000             | -46.6332                | 108.0458    |
|                 | Oxymask Aerosol | <mark>-88.35148<sup>*</sup></mark>  | <mark>28.75438</mark> | .016 <sup>a</sup> | -165.6910               | -11.0120    |
|                 | MultiMask       | 60.18630                            | 28.75438              | .233              | -17.1532                | 137.5258    |
| Oxymask Aerosol | Aerosol Mask    | <mark>119.05778<sup>*</sup></mark>  | <mark>28.75438</mark> | .000 <sup>a</sup> | 41.7183                 | 196.3973    |
|                 | Prototype       | <mark>88.35148<sup>*</sup></mark>   | <mark>28.75438</mark> | .016 <sup>a</sup> | 11.0120                 | 165.6910    |

Table 3. Post-hoc Bonferroni test comparing masks (drug in µg)

\* The mean difference is significant at the 0.05 level.

a.OxyMask<sup>TM</sup> Aerosol deposition greater than Airlife<sup>TM</sup> Aerosol Mask and Prototype OxyMulti Mask Aerosol Mask = Airlife<sup>TM</sup> aerosol mask Prototype = Prototype OxyMulti Mask

Table 4. ANOVA Results. Deposition difference between masks stratified by flow.  $(drug in \mu g)$ 

| Flow            |                | Sum of<br>Squares | df | Mean Square | F      | Sig.              |
|-----------------|----------------|-------------------|----|-------------|--------|-------------------|
|                 | Between Groups | 64567.449         | 3  | 21522.483   | 52.799 | <mark>.000</mark> |
| <mark>0</mark>  | Within Groups  | 3261.020          | 8  | 407.628     |        |                   |
|                 | Total          | 67828.469         | 11 |             |        |                   |
|                 | Between Groups | 9565.944          | 3  | 3188.648    | .121   | .947              |
| 2               | Within Groups  | 526859.200        | 20 | 26342.960   |        |                   |
|                 | Total          | 536425.144        | 23 |             |        |                   |
|                 | Between Groups | 42899.482         | 3  | 14299.827   | .736   | .543              |
| 4               | Within Groups  | 388381.693        | 20 | 19419.085   |        |                   |
|                 | Total          | 431281.175        | 23 |             |        |                   |
| _               | Between Groups | 64548.903         | 3  | 21516.301   | 30.689 | <mark>.000</mark> |
| <mark>8</mark>  | Within Groups  | 14021.985         | 20 | 701.099     |        |                   |
|                 | Total          | 78570.889         | 23 |             |        |                   |
|                 | Between Groups | 92550.069         | 3  | 30850.023   | 80.560 | <mark>.000</mark> |
| <mark>10</mark> | Within Groups  | 7658.905          | 20 | 382.945     |        |                   |
|                 | Total          | 100208.974        | 23 |             |        |                   |

| Flow | (I) Mask                  | (J) Mask                     | Mean                    | Std. Error | Sig.                          | 95% Confid | ence Interval |
|------|---------------------------|------------------------------|-------------------------|------------|-------------------------------|------------|---------------|
|      |                           |                              | Difference (I-J)        |            |                               | Lower      | Upper Bound   |
|      |                           |                              |                         |            |                               | Bound      |               |
|      | -                         | Aerosol Mask                 | 142.73333 <sup>*</sup>  | 16.48489   | .000 <sup>a</sup>             | 85.3844    | 200.0823      |
|      | <mark>MultiMask</mark>    | Prototype                    | 34.16667                | 16.48489   | .432                          | -23.1823   | 91.5156       |
|      |                           | Oxymask Aerosol              | $-58.86667^{*}$         | 16.48489   | .044 <sup>b</sup>             | -116.2156  | -1.5177       |
|      |                           | MultiMask                    | -142.73333 <sup>*</sup> | 16.48489   | .000 <sup>a</sup>             | -200.0823  | -85.3844      |
|      | Aerosol Mask              | Prototype                    | $-108.56667^{*}$        | 16.48489   | .001°                         | -165.9156  | -51.2177      |
| 0    |                           | Oxymask Aerosol              | $-201.60000^{*}$        | 16.48489   | .000 <sup>d</sup>             | -258.9489  | -144.2511     |
| V    |                           | MultiMask                    | -34.16667               | 16.48489   | .432                          | -91.5156   | 23.1823       |
|      | Prototype                 | Aerosol Mask                 | $108.56667^{*}$         | 16.48489   | .001 <sup>c</sup>             | 51.2177    | 165.9156      |
|      |                           | Oxymask Aerosol              | -93.03333 <sup>*</sup>  | 16.48489   | .003 <sup>e</sup>             | -150.3823  | -35.6844      |
|      |                           | MultiMask                    | 58.86667 <sup>*</sup>   | 16.48489   | .044 <sup>b</sup>             | 1.5177     | 116.2156      |
|      | Oxymask Aerosol           | Aerosol Mask                 | $201.60000^{*}$         | 16.48489   | .000 <sup>d</sup>             | 144.2511   | 258.9489      |
|      |                           | Prototype                    | 93.03333 <sup>*</sup>   | 16.48489   | .003 <sup>e</sup>             | 35.6844    | 150.3823      |
|      |                           | Aerosol Mask                 | 32.44167                | 15.28724   | .279                          | -12.3059   | 77.1892       |
|      | <mark>MultiMask</mark>    | Prototype                    | -7.81667                | 15.28724   | 1.000                         | -52.5642   | 36.9309       |
|      |                           | <mark>Oxymask Aerosol</mark> | -106.37333*             | 15.28724   | .000 <sup>f</sup>             | -151.1209  | -61.6258      |
|      |                           | MultiMask                    | -32.44167               | 15.28724   | .279                          | -77.1892   | 12.3059       |
|      | <mark>Aerosol Mask</mark> | Prototype                    | -40.25833               | 15.28724   | .096                          | -85.0059   | 4.4892        |
| 8    |                           | Oxymask Aerosol              | -138.81500*             | 15.28724   | .000 <sup>g</sup>             | -183.5626  | -94.0674      |
| 0    |                           | MultiMask                    | 7.81667                 | 15.28724   | 1.000                         | -36.9309   | 52.5642       |
|      | Prototype                 | Aerosol Mask                 | 40.25833                | 15.28724   | .096                          | -4.4892    | 85.0059       |
|      |                           | Oxymask Aerosol              | -98.55667*              | 15.28724   | .000 <sup>h</sup>             | -143.3042  | -53.8091      |
|      |                           | <mark>MultiMask</mark>       | 106.37333*              | 15.28724   | .000 <sup>f</sup>             | 61.6258    | 151.1209      |
|      | Oxymask Aerosol           | Aerosol Mask                 | 138.81500*              | 15.28724   | .000 <sup>g</sup>             | 94.0674    | 183.5626      |
|      |                           | Prototype                    | 98.55667 <sup>*</sup>   | 15.28724   | <mark>.000<sup>h</sup></mark> | 53.8091    | 143.3042      |

Table 5. Post-hoc Bonferroni comparing drug deposition for each aerosol mask at flows where significance found. (drug in  $\mu g$ )

|     |                        | Aerosol Mask           | 34.58333 <sup>*</sup> | 11.29816 | .037 <sup>i</sup> | 1.5123    | 67.6544   |
|-----|------------------------|------------------------|-----------------------|----------|-------------------|-----------|-----------|
|     | <mark>MultiMask</mark> | Prototype              | 30.71500              | 11.29816 | .079              | -2.3561   | 63.7861   |
|     |                        | Oxymask Aerosol        | -118.26667*           | 11.29816 | .000 <sup>j</sup> | -151.3377 | -85.1956  |
|     |                        | <mark>MultiMask</mark> | -34.58333*            | 11.29816 | .037 <sup>i</sup> | -67.6544  | -1.5123   |
|     | Aerosol Mask           | Prototype              | -3.86833              | 11.29816 | 1.000             | -36.9394  | 29.2027   |
| -10 |                        | Oxymask Aerosol        | $-152.85000^{*}$      | 11.29816 | .000 <sup>k</sup> | -185.9211 | -119.7789 |
| 10  |                        | MultiMask              | -30.71500             | 11.29816 | .079              | -63.7861  | 2.3561    |
|     | Prototype              | Aerosol Mask           | 3.86833               | 11.29816 | 1.000             | -29.2027  | 36.9394   |
|     |                        | Oxymask Aerosol        | -148.98167*           | 11.29816 | .000 <sup>1</sup> | -182.0527 | -115.9106 |
|     |                        | MultiMask              | 118.26667*            | 11.29816 | .000 <sup>j</sup> | 85.1956   | 151.3377  |
|     | Oxymask Aerosol        | Aerosol Mask           | $152.85000^{*}$       | 11.29816 | .000 <sup>k</sup> | 119.7789  | 185.9211  |
|     |                        | Prototype              | $148.98167^{*}$       | 11.29816 | .000 <sup>1</sup> | 115.9106  | 182.0527  |

\* The mean difference is significant at the 0.05 level.

a. Flow = 0, MultiMask drug deposition greater than Airlife<sup>™</sup>aerosol mask.

b. Flow = 0, Oxymask<sup>™</sup> Aerosol drug deposition greater than MultiMask.

c. Flow = 0, Prototype OxyMulti Mask drug deposition greater than Airlife<sup>™</sup>aerosol mask.

d. Flow = 0, Oxymask<sup>™</sup> Aerosol drug deposition greater than Airlife<sup>™</sup>aerosol mask.

e. Flow = 0, Oxymask<sup>TM</sup> Aerosol drug deposition greater than Prototype OxyMulti Mask.

f. Flow = 8, Oxymask<sup>TM</sup> Aerosol drug deposition greater than MultiMask.

g. Flow = 8, Oxymask<sup>TM</sup> Aerosol drug deposition greater than Airlife<sup>TM</sup> aerosol mask.

h. Flow = 8, Oxymask<sup>™</sup> Aerosol drug deposition greater than Prototype OxyMulti Mask.

i. Flow = 10, MultiMask drug deposition greater than Airlife<sup>™</sup> aerosol mask.

j. Flow = 10, Oxymask<sup>™</sup> Aerosol drug deposition greater than MultiMask.

k. Flow = 10, Oxymask<sup>™</sup> Aerosol drug deposition greater than Airlife<sup>™</sup> aerosol mask.

1. Flow = 10, Oxymask<sup>™</sup> Aerosol drug deposition greater than Prototype OxyMulti Mask.

Aerosol Mask = Airlife<sup>™</sup> aerosol mask

Oxymask = Oxymask<sup>™</sup> Aerosol

Prototype = Prototype OxyMulti Mask

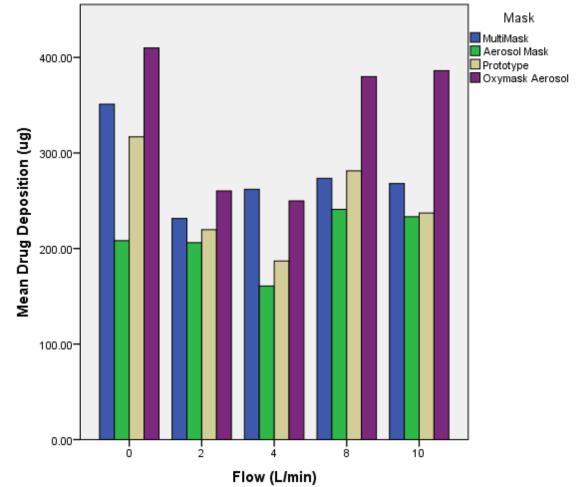

| Flow |                 | Ν  | Mean     | Std.      | Std. Error | Minimum | Maximum |
|------|-----------------|----|----------|-----------|------------|---------|---------|
|      |                 |    |          | Deviation |            |         |         |
|      | MultiMask       | 3  | 351.0000 | 15.43988  | 8.91422    | 333.30  | 361.70  |
|      | Aerosol Mask    | 3  | 208.2667 | 14.93229  | 8.62116    | 191.40  | 219.80  |
| 0    | Prototype       | 3  | 316.8333 | 19.76318  | 11.41028   | 297.50  | 337.00  |
|      | Oxymask Aerosol | 3  | 409.8667 | 27.90275  | 16.10966   | 379.00  | 433.30  |
|      | Total           | 12 | 321.4917 | 78.52531  | 22.66830   | 191.40  | 433.30  |
|      | MultiMask       | 6  | 231.4833 | 154.33722 | 63.00791   | 84.00   | 392.60  |
|      | Aerosol Mask    | 6  | 206.1400 | 168.57326 | 68.81975   | 50.00   | 371.32  |
| 2    | Prototype       | 6  | 219.7183 | 159.24214 | 65.01033   | 71.40   | 383.54  |
|      | Oxymask Aerosol | 6  | 260.3067 | 166.66391 | 68.04026   | 90.53   | 450.26  |
|      | Total           | 24 | 229.4121 | 152.71815 | 31.17346   | 50.00   | 450.26  |
|      | MultiMask       | 6  | 261.9333 | 86.52571  | 35.32397   | 169.10  | 351.90  |
|      | Aerosol Mask    | 6  | 160.7467 | 139.83310 | 57.08663   | 30.00   | 331.84  |
| 4    | Prototype       | 6  | 186.9367 | 146.40740 | 59.77057   | 47.11   | 351.01  |
|      | Oxymask Aerosol | 6  | 249.8750 | 170.88364 | 69.76295   | 89.21   | 434.47  |
|      | Total           | 24 | 214.8729 | 136.93559 | 27.95186   | 30.00   | 434.47  |
|      | MultiMask       | 6  | 273.4500 | 26.46195  | 10.80305   | 239.50  | 321.00  |
|      | Aerosol Mask    | 6  | 241.0083 | 24.33017  | 9.93275    | 210.79  | 268.16  |
| 8    | Prototype       | 6  | 281.2667 | 28.44977  | 11.61457   | 258.41  | 333.95  |
|      | Oxymask Aerosol | 6  | 379.8233 | 26.51067  | 10.82294   | 327.37  | 402.89  |
|      | Total           | 24 | 293.8871 | 58.44763  | 11.93057   | 210.79  | 402.89  |
|      | MultiMask       | 6  | 267.9167 | 19.23886  | 7.85423    | 242.00  | 291.40  |
|      | Aerosol Mask    | 6  | 233.3333 | 29.49421  | 12.04096   | 183.95  | 260.79  |
| 10   | Prototype       | 6  | 237.2017 | 14.33667  | 5.85292    | 212.89  | 253.41  |
|      | Oxymask Aerosol | 6  | 386.1833 | 9.28433   | 3.79031    | 376.05  | 398.42  |
|      | Total           | 24 | 281.1588 | 66.00691  | 13.47360   | 183.95  | 398.42  |

Table 6. Mean drug deposition for each aerosol mask at each flow tested (drug in  $\mu g$ )

Aerosol Mask = Airlife<sup>TM</sup> aerosol mask

Prototype = Prototype OxyMulti Mask





| Table 7. Overall | particle | size for                                | • each aeroso | l mask ( | μm) |
|------------------|----------|-----------------------------------------|---------------|----------|-----|
|                  | <b>r</b> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |               |          | p/  |

| Mask (n)                               | MMAD        | GSD         |
|----------------------------------------|-------------|-------------|
|                                        | Mean (SD)   | Mean (SD)   |
| MultiMask (27)                         | 2.54 (0.25) | 2.02(0.10)  |
| Oxymask <sup>™</sup> Aerosol (27)      | 2.74 (0.34) | 2.04 (0.07) |
| Prototype OxyMulti Mask (27)           | 2.79 (0.28) | 2.07 (0.10) |
| Airlife <sup>™</sup> Aerosol Mask (27) | 2.87 (0.19) | 2.11 (0.08) |
|                                        | Total Runs  | 108         |

|      |                | Sum of  | df  | Mean   | F     | Sig.              |
|------|----------------|---------|-----|--------|-------|-------------------|
|      |                | Squares |     | Square |       |                   |
|      | Between Groups | 1.545   | 3   | .515   | 7.178 | .000 <sup>a</sup> |
| MMAD | Within Groups  | 7.464   | 104 | .072   |       |                   |
|      | Total          | 9.009   | 107 |        |       |                   |
|      | Between Groups | .107    | 3   | .036   | 4.363 | .006 <sup>b</sup> |
| GSD  | Within Groups  | .853    | 104 | .008   |       |                   |
|      | Total          | .961    | 107 |        |       |                   |

Table 8. ANOVA Results MMAD and GSD

\* The mean difference is significant at the 0.05 level. a. Significant difference in mean MMAD between 4 masks. (p < 0.05) b. Significant difference in mean GSD between 4 masks. (p<0.05)

| Dependent | (I) Mask                  | (J) Mask                  | Mean               | Std.   | Sig.               | 95% Cor | nfidence |
|-----------|---------------------------|---------------------------|--------------------|--------|--------------------|---------|----------|
| Variable  | le                        |                           | Difference         | Error  |                    | Inter   | rval     |
|           |                           |                           | (I-J)              |        |                    | Lower   | Upper    |
|           |                           |                           |                    |        |                    | Bound   | Bound    |
|           |                           | <mark>Aerosol Mask</mark> | 32593*             | .07291 | .000 <sup>a</sup>  | 5220    | 1298     |
|           | <mark>MultiMask</mark>    | Prototype                 | 24074*             | .07291 | .008 <sup>b</sup>  | 4368    | 0446     |
|           |                           | <mark>Oxymask</mark>      | $20000^{*}$        | .07291 | .043°              | 3961    | 0039     |
|           |                           | <mark>MultiMask</mark>    | $.32593^{*}$       | .07291 | .000 <sup>a</sup>  | .1298   | .5220    |
|           | <mark>Aerosol Mask</mark> | Prototype                 | .08519             | .07291 | 1.000              | 1109    | .2813    |
| MMAD      |                           | Oxymask                   | .12593             | .07291 | .523               | 0702    | .3220    |
| MMAD      |                           | <mark>MultiMask</mark>    | $.24074^{*}$       | .07291 | .008 <sup>b</sup>  | .0446   | .4368    |
|           | Prototype                 | Aerosol Mask              | 08519              | .07291 | 1.000              | 2813    | .1109    |
|           |                           | Oxymask                   | .04074             | .07291 | 1.000              | 1554    | .2368    |
|           |                           | <mark>MultiMask</mark>    | $.20000^{*}$       | .07291 | <mark>.043°</mark> | .0039   | .3961    |
|           | <mark>Oxymask</mark>      | Aerosol Mask              | 12593              | .07291 | .523               | 3220    | .0702    |
|           |                           | Prototype                 | 04074              | .07291 | 1.000              | 2368    | .1554    |
|           |                           | <mark>Aerosol Mask</mark> | $08148^{*}$        | .02465 | .008 <sup>d</sup>  | 1478    | 0152     |
|           | <mark>MultiMask</mark>    | Prototype                 | 04074              | .02465 | .609               | 1070    | .0256    |
|           |                           | Oxymask                   | 01111              | .02465 | 1.000              | 0774    | .0552    |
|           |                           | <mark>MultiMask</mark>    | $.08148^{*}$       | .02465 | .008 <sup>d</sup>  | .0152   | .1478    |
|           | <mark>Aerosol Mask</mark> | Prototype                 | .04074             | .02465 | .609               | 0256    | .1070    |
| GSD       |                           | <mark>Oxymask</mark>      | $.07037^{*}$       | .02465 | .031 <sup>e</sup>  | .0041   | .1367    |
| USD       |                           | MultiMask                 | .04074             | .02465 | .609               | 0256    | .1070    |
|           | Prototype                 | Aerosol Mask              | 04074              | .02465 | .609               | 1070    | .0256    |
|           |                           | Oxymask                   | .02963             | .02465 | 1.000              | 0367    | .0959    |
|           |                           | MultiMask                 | .01111             | .02465 | 1.000              | 0552    | .0774    |
|           | <mark>Oxymask</mark>      | Aerosol Mask              | 07037 <sup>*</sup> | .02465 | .031 <sup>d</sup>  | 1367    | 0041     |
|           |                           | Prototype                 | 02963              | .02465 | 1.000              | 0959    | .0367    |

*Table 9. Post-hoc Bonferroni test comparing MMAD and GSD for each mask* $(\mu m)$ 

\* The mean difference is significant at the 0.05 level.

a. MultiMask MMAD significantly smaller than Airlife<sup>™</sup> aerosol mask.

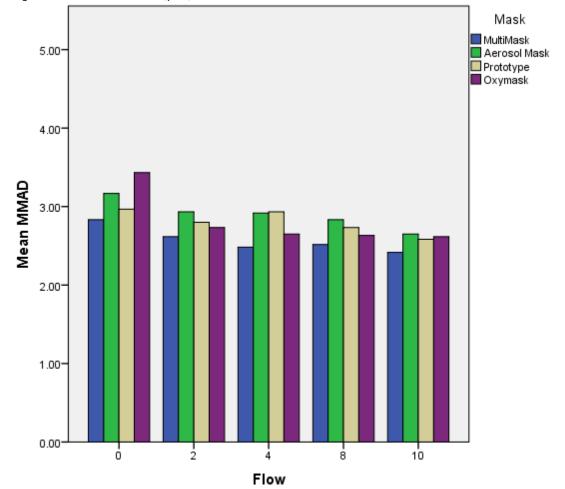
b. MultiMask MMAD significantly smaller than Prototype OxyMulti Mask.

c. MultiMask MMAD significantly smaller than Oxymask<sup>™</sup> Aerosol.

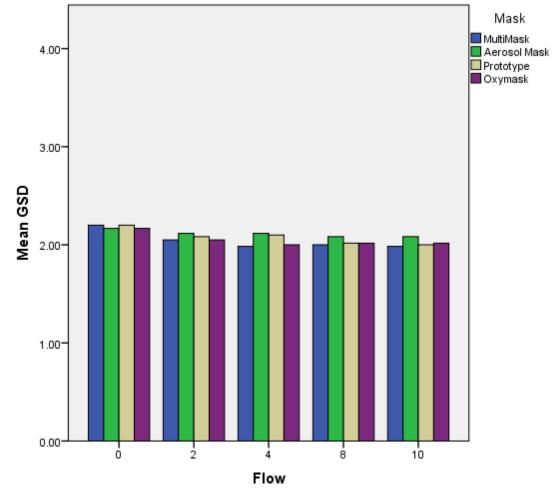
d. MultiMask GSD significantly smaller than Airlife<sup>™</sup> aerosol mask.

e. Oxymask<sup>™</sup> Aerosol GSD significantly smaller than Airlife<sup>™</sup> aerosol mask.

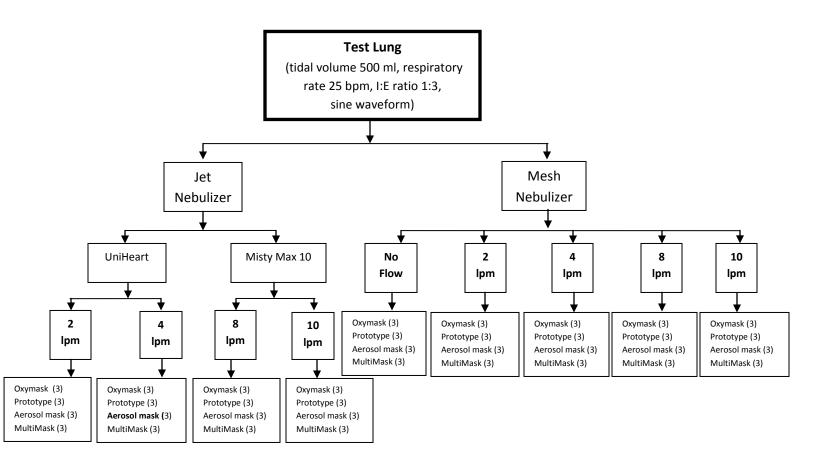
Aerosol Mask = Airlife<sup>™</sup> aerosol mask


Oxymask = Oxymask<sup>™</sup> Aerosol

Prototype = Prototype OxyMulti Mask


| Flow (n)      | MMAD        | GSD         |
|---------------|-------------|-------------|
|               | Mean (SD)   | Mean (SD)   |
| 0 L/min (12)  | 3.10 (0.38) | 2.18(0.10)  |
| 2 L/min (24)  | 2.77 (0.26) | 2.07 (0.09) |
| 4 L/min (24)  | 2.75 (0.26) | 2.05 (0.19) |
| 8 L/min (24)  | 2.68 (0.20) | 2.03 (0.07) |
| 10 L/min (24) | 2.57 (0.22) | 2.02 (0.07) |

**Table 10.** Mean MMAD / GSD for each aerosol mask at flows found significant. (µm)


**Graph 2.** Mean MMAD  $(\mu m)$ 







# Appendix A



# Appendix B

Dose Deposition Equipment

|                                  | Tracking    | Manufacturer                                            | Notes                     |
|----------------------------------|-------------|---------------------------------------------------------|---------------------------|
| Spectrophotometer                |             | SPECTRA Max Plus                                        |                           |
| Adult OxyMask                    | Ref: OMN-   | Southmedic                                              | Aerosol mask              |
| Aerosol                          | 4025-8      | www.southmedic.com                                      | only equipment            |
|                                  |             |                                                         | used from<br>mask/neb kit |
| Adult Oxy Multi-Mask             |             | Southmedic                                              |                           |
| Prototype                        |             |                                                         |                           |
| Adult MultiMask                  | Ref: OHH-   | Southmedic                                              |                           |
|                                  | 1425-8      | http://southmedic.com/products/o                        |                           |
|                                  |             | xy-multi-mask/                                          |                           |
| Adult AirLife <sup>™</sup>       | 001206      | Carefusion                                              |                           |
| Aerosol Mask                     |             | www.carefusion.com/pdf/Respira                          |                           |
|                                  |             | tory/Respiratory_Consumables/Ai                         |                           |
|                                  |             | rLife_Catalog_082211.pdf                                |                           |
| AirLife™                         | Ref: 001851 | Carefusion                                              |                           |
| Nonconductive                    |             | www.carefusion.com/pdf/Respira                          |                           |
| <b>Respiratory</b> Therapy       |             | tory/Respiratory_Consumables/Ai                         |                           |
| Filter                           |             | rLife_Catalog_082211.pdf                                |                           |
| AirLife <sup>™</sup> brand Misty | Ref: 002430 | Carefusion                                              |                           |
| Max 10 <sup>TM</sup> disposable  |             | www.carefusion.com/pdf/Respira                          |                           |
| nebulizer                        |             | tory/Respiratory_Consumables/Ai                         |                           |
|                                  |             | rLife_Catalog_082211.pdf                                |                           |
| Laerdal® Airway                  |             | Laerdal                                                 |                           |
| Management Trainer               |             | http://www.laerdal.com/doc/92/L                         |                           |
|                                  |             | aerdal-Airway-Management-                               |                           |
|                                  |             | <u>Trainer</u>                                          |                           |
| Dual Adult Training              |             | Michigan Instruments<br>http://www.michiganinstruments. |                           |
| and Test Lung                    |             |                                                         |                           |
| Uniheart Nebulizer               | 100850      | <u>com/dual-adult-lung</u><br>Westmed Heart® Nebulizers |                           |
| Unineart Nebulizer               | 100850      | http://www.westmedinc.com/lines                         |                           |
|                                  |             | heets/Heart%20Nebs%20Rev.09.                            |                           |
|                                  |             | pdf                                                     |                           |
| Aeroneb Solo                     |             | Aerogen                                                 |                           |
| Nebulizer                        | AG-         | http://aerogen.com/aeroneb-                             |                           |
|                                  | AS3000-     | solo.html                                               |                           |
|                                  | US          |                                                         |                           |
| Novametrix                       |             | Phillips Respironics                                    |                           |
| CosmoPlus                        |             |                                                         |                           |
| <b>Respiratory Profile</b>       |             |                                                         |                           |
| Monitor                          |             |                                                         |                           |

# Appendix C

Particle Size Equipment

|                                      | Tracking      | Manufacturer                                                 | Notes                                                                                       |
|--------------------------------------|---------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Anderson 8 Stage<br>Cascade Impactor | Serial #1372  | Westech<br>www.westechinstruments.com                        | Induction port &<br>inlet cone<br>inspection report                                         |
|                                      |               |                                                              | certification<br>(06.13.2012) on file<br>in Rush University<br>Aerosol Lab,<br>Chicago, IL. |
| Vacuum Pump                          | Part          | Westech                                                      | 28.3 LPM                                                                                    |
| Assembly                             | #10709APB     | www.westechinstruments.com                                   | applications w/ flow meter and control                                                      |
|                                      |               |                                                              | valve. Rotary vane                                                                          |
|                                      |               |                                                              | w/ sampling range                                                                           |
| ~                                    |               |                                                              | 5-30 LPM                                                                                    |
| Spectrophotometer                    |               | SPECTRA Max Plus                                             |                                                                                             |
| Adult OxyMask                        | Ref: OMN-     | Southmedic <u>www.southmedic.com</u>                         | Aerosol mask only                                                                           |
| Aerosol                              | 4025-8        |                                                              | equipment used<br>from mask/neb kit                                                         |
| Adult Oxy Multi-                     |               | Southmedic                                                   | From Southmedic                                                                             |
| Mask Prototype                       |               |                                                              |                                                                                             |
| Adult Airlife <sup>TM</sup>          | 001206        | Carefusion                                                   |                                                                                             |
| Aerosol Mask                         |               | www.carefusion.com/pdf/Respirat                              |                                                                                             |
|                                      |               | ory/Respiratory_Consumables/Air<br>Life_Catalog_082211.pdf   |                                                                                             |
| Uniheart Nebulizer                   | 100850        | Westmed Heart® Nebulizers<br>http://www.westmedinc.com/lines |                                                                                             |
|                                      |               | heets/Heart%20Nebs%20Rev.09.p<br>df                          |                                                                                             |
| Aeroneb® Solo                        |               | Aerogen                                                      |                                                                                             |
| Nebulizer                            | AG-           | http://aerogen.com/aeroneb-                                  |                                                                                             |
|                                      | AS3000-<br>US | <u>solo.html</u>                                             |                                                                                             |

## References

- 1. Ari, A., Hess, D., Meyers, T. A guide to aerosol delivery devices for respiratory therapists. American Association for Respiratory Care, Dallas, Texas 2009.
- Beecroft JM, Patrick JH. Comparison of the Oxymask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen Dependent Patients. Respir Care 2006; 13(5):247-252.
- 3. Ari A, Robert JH, Meryl MS, James BF. An In Vitro Evaluation of Aerosol Delivery Through Tracheostomy and Endotracheal Tubes Using Different Interfaces. American Association Respir Care 2012;57(7):1066-70.

# Rush University Aerosol Lab Contact Information

Meagan N. Dubosky, MS, RRT-ACCS, NPS, AE-C Research Coordinator, Department of Respiratory Care Rush University, College of Health Sciences Meagan\_dubosky@rush.edu Tel: 312-942-3345

David L. Vines, MHS, RRT, FAARC Program Director, Chair Associate Professor, Department of Respiratory Care Rush University, College of Health Sciences David\_vines@rush.edu Tel: 312-942-4408